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Abstract
We analyse the conductance of an Aharonov–Bohm (AB) ring with a quantum
point contact (QPC) that is inserted in one of its arms and which contains a
single electron. The conductance of the device is calculated as a function of the
one-dimensional (1D) carrier concentration and the value of the magnetic field
perpendicular to the plane of the AB ring. The exchange interaction between
the electron localized inside QPC and freely propagating electrons is shown
to modify the conductance pattern at small carrier concentration significantly,
giving rise to the effects related to the formation of the ‘0.7 feature’ in the
quantum conductance staircase.

1. Introduction

The recent progress in nanotechnology has allowed the preparation of quasi-one-dimensional
semiconductor systems with low density of high-mobility charge carriers, which exhibit
ballistic behaviour when the transport relaxation time, τ = m∗ μ/e, is longer than the time
of electron–electron interaction, h̄/kBT , thereby leading to the condition kBT τ/h̄ > 1. The
transport of the carriers in such systems is of a coherent nature, which is revealed by the
experimental findings of the quantum interference phenomena [1–15]. Since the ballistic
carrier transport is not accompanied by Joule losses, the conductance of the quantum wires
and the quantum point contacts (QPCs) that represent the variety of the quasi-one-dimensional
semiconductor systems depends only on the number of the open channels, N , and transmission
coefficient, T , at small drain–source biases [14, 15]:

G0 = gs
e2

h
NT (1)

where the spin factor, gs, describes the spin degeneration of the wire’s mode. The number
of channels, N , can be changed by varying the split-gate voltage, Vg, which results in the
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fabrication of a quantum wire connecting the two two-dimensional (2D) reservoirs [10]. Thus,
the dependence G ( Vg) represents the quantum conductance staircase, because the conductance
of the quantum wire is changed by the value of gse2/h each time the Fermi level coincides with
one of the 1D subbands [11, 12].

In contrast to the diffusion mode, the role of spin correlations in ballistic transport
processes is considerably enhanced [2–6], specifically when only a single propagation channel
is occupied. Among their most dramatic manifestations is the appearance of the ‘0.7(2e2/h)’
feature, which is split off from the first step in the quantum conductance staircase revealed
by a 1D channel [1, 7–9]. Two experimental observations indicate the importance of the
spin component for the behaviour of this ‘0.7(2e2/h)’ feature. Firstly, the electron g-factor
was found to increase from 0.4 to 1.3 as the number of occupied 1D subbands decreases [7].
Secondly, the height of the ‘0.7(2e2/h)’ feature attains a value of ‘0.5(2e2/h)’ in a strong
external magnetic field [7–9]. These results have defined the spontaneous spin polarization
of a 1D gas in a zero magnetic field as one of the probable mechanisms for the ‘0.7(2e2/h)’
feature [16–18].

The model of a quantum point contact containing only one localized electron is rather
promising for an explanation of the ‘0.7(2e2/h)’ feature [19–22], as containing nonzero
magnetic moment this state affects the propagating carriers via exchange interaction. Since
it is defined by the mutual orientation of their spins, the transmission coefficient through a QPC
with a magnetic moment is spin dependent. Besides, if the triplet state energy is lower than the
singlet state one, the potential barrier formed by the QPC region for the carrier in the singlet
configuration is higher than for the triplet state. Therefore at small concentration of carriers
the ingoing electron in the triplet configuration passes the QPC freely, while the carriers in the
singlet configuration are reflected, thereby defining the principal contribution of the triplet pairs
to the total conductivity. In zero magnetic fields the probability of the realization of the triplet
configuration is equal to 3/4 against 1/4 for the singlet one, and thus the QPC conductance in
the regime considered is G = 0.75(2e2/h) [21, 22]. In contrast, if the singlet configuration
is energetically preferable, the conductance should be equal to G = 0.25(2e2/h) [22]. The
application of the external magnetic field leads to the spin polarization of both the propagating
and localized carriers, thus giving rise to a conductance value G = 0.5(2e2/h).

In the present paper, for the first time, we analyse theoretically the spin-dependent transport
in a double-slit Aharonov–Bohm (AB) ring with a QPC that is inserted in one of its arms
and which contains the localized electron. Recently the experimental realization of such a
structure has become possible [23, 24]. Without the extra QPC inserted the conductance of a
two-terminal AB ring as a function of the external magnetic field exhibits the h/e conductance
oscillations provided by the AB phase shifts as well as the h/2e Altshuler–Aronov–Spivak
(AAS) conductance oscillations due to the round trip interference [25]. The conductance as a
function of the chemical potential determined by a gate voltage, Vg, applied perpendicularly
to the structure’s interface exhibits periodic oscillations due to the multiple scattering of the
carriers inside the ring. The presence of the localized spin in one of the arms is shown to modify
the oscillation pattern significantly, and lead to the nontrivial dependence of the conductance
on an external magnetic field and the 1D carrier concentration, which is controlled by varying
the split gate voltage, Vg.

The paper is organized as follows. In section 2 we formulate the model that is used for
theoretical description of a double-slit AB ring with a QPC inserted in one of its arms. In
section 3 we analyse the conductance of a quantum wire with localized magnetic moment.
This auxiliary section allows us to build the spin-dependent scattering matrix of the QPC.
In section 4 we calculate the conductance of a double-slit AB ring with a QPC inserted as
a function of the external magnetic field and the 1D carrier concentration. The conclusions
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Figure 1. Schematic view of a double-slit AB ring with a QPC inserted in one of its arms.

summarize the results of the work. In the appendices we give the mathematical details of the
calculations of the conductances.

2. The model

The device analysed is schematically shown in the figure 1. A double-slit AB ring is
connected with symmetrically placed leads. A QPC with a single localized electron is inserted
symmetrically between the ingoing and outgoing leads in one of its arms. Both the AB ring and
leads are considered to be purely one-dimensional, which means that the cross section of the
leads and the Fermi energy of carriers are small enough to prevent the population of the higher
one-dimensional subbands, m L2 EF

π2h̄2 < 1. The use of the 1D approach is a basis of the semi-
analytical theory with a reasonable number of free parameters. Besides, the single-channel
devices that are now achievable experimentally [23, 24, 27, 28] are preferably used comparing
to the multi-channel devices because of much less effective spin relaxation [26].

In the framework of the present model we concentrate on low temperatures to provide the
nearly step-liked energy distribution of the carriers in the ingoing and outgoing leads. Besides,
the drain–source voltage Vds is taken to be equal and small enough, eVds � EF, so that only
carriers whose energy lies in the vicinity of the Fermi surface participate in the transport. The
radius of the AB ring is taken to be much smaller than inelastic scattering length to satisfy
the conditions of ballistic transport. These conditions allow us to use the Landauer–Buttiker
approach for the conductance calculations [14, 15].

The conjunctions between the AB ring and the leads are modelled by the QPCs which
provide the elastic scattering of the carriers. The QPCs are presumed to be identical and
spin independent. The latter assumption means that the spin of the carrier conserves during
the passing through the QPCs. Each QPC is characterized by the amplitude of the elastic
backscattering of the carrier propagating inside the lead, σ, |σ | < 1, which is determined by
the system geometry. The QPCs become completely transparent if σ = 0.

An external magnetic field is applied perpendicularly to the plane of the AB ring. This
field acts on both spatial and spin coordinates of the electrons moving inside the AB ring and
the leads thereby define the Aharonov–Bohm phase shifts together with the Zeeman splitting.
The goal of this work is to calculate the conductance of the device as a function of the external
magnetic field and the concentration of electrons in the AB ring and the outgoing leads. It
should be noted that the electron concentration is connected with the device Fermi energy at
zero temperature or with the device chemical potential in the case of finite temperatures.

We consider the QPC dimension being much smaller than the AB ring diameter, so the
propagating electrons are supposed to interact with the localized spin only in the QPC region.
Thus effects similar to the formation of an electron Kondo cloud [29] in a mesoscopic one-
dimensional ring are neglected. This approach is valid only for relatively high temperatures
(see below).
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Figure 2. The scheme of the scattering in a quantum wire with a localized magnetic moment.

In the presence of an external magnetic field the propagating electrons can be characterized
by their spin projection on the structure growth axis and the Fermi wavenumber. The latter is
different for the two spin components due to Zeeman splitting:

kF↑ = πn1D

2
+ 2mgeμB B

π h̄2n1D
, kF↓ = πn1D

2
− 2mgeμB B

π h̄2n1D
(2)

where n1D is the one-dimensional concentration of the carriers. If the external magnetic field is
large enough so that

B >
π2h̄2n2

1D

4mgeμB
, (3)

the electrons in the leads are completely polarized, and the wavenumber of the spin-up electrons

is independent of the magnetic field value, kF↑ = πn1D, EF = π2h̄2n2
1D

2m .
The interaction of the localized and propagating electrons inside the QPC can be modelled

within the framework of the Heisenberg exchange Hamiltonian,

Hint = Vdir − Vexσ e ·σ S, (4)

where Vdir characterizes the Coulomb repulsion between the electrons plus the effect of the
gate applied to the QPC, Vex corresponds to the exchange interaction, and the indices S and e
correspond to the localized and propagating electrons, respectively.

The eigenstates of the Hamiltonian (4) correspond to the singlet and triplet states (see
appendix A). In zero magnetic field the singlet and triplet state energies are split by 4Vex.
The position of the states depends on the sign of the coupling constant. If the ‘ferromagnetic’
coupling dominates, Vex > 0, the triplet configuration becomes to be preferable energetically,
while the opposite case is valid for the ‘antiferromagnetic’ coupling, Vex < 0.

3. The conductance of a 1D quantum wire with localized magnetic moment

Before we proceed with the calculations of the conductance of an AB ring with localized
magnetic moment, it is instructive to analyse the scattering in a quantum wire containing a local
magnetic moment as shown in the scheme presented in figure 2. This will allow us to construct
the spin-dependent scattering matrix of the QPC, which should be used in further calculations.
Within the framework of our model the QPC contains a single electron interacting with freely
propagating electrons by means of the Hamiltonian (4). The many-body correlations (similar
to the correlations of the Kondo type [19, 20, 30]) are neglected in the present work, although
we qualitatively discuss them.

Due to the exchange interaction between localized and freely propagating electrons the
latter can either conserve their spin projection or undergo a spin-flip. The probabilities of these
processes depend on the mutual orientation of the two spins as well as on the exchange matrix
element Vex (see appendix B).
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If the spins of the localized and propagating electrons are parallel, only spin-conservative
processes are allowed. Therefore, in this case the following 2 × 2 scattering matrices can be
introduced:
( |↑out〉left

|↑out〉right

)
= S↑↑

( |↑in〉left

|↑in〉right

)
;

( |↓out〉left

|↓out〉right

)
= S↓↓

( |↓in〉left

|↓in〉right

)
(5a)

S↑↑
QPC =

(
Be↑,S↑→e↑,S↑ A∗

e↑,S↑→e↑,S↑
Ae↑,S↑→e↑,S↑ −B∗

e↑,S↑→e↑,S↑

)
; S↓↓

QPC =
(

Be↓,S↓→e↓,S↓ A∗
e↓,S↓→e↓,S↓

Ae↓,S↓→e↓,S↓ −B∗
e↓,S↓→e↓,S↓

)

(5b)

where A and B are the amplitudes of transmission and reflection respectively, and the indices
denote the spin states before and after scattering.

On the other hand, if the spins of localized and propagating electrons are antiparallel, spin-
flip processes are possible and we need the 4 × 4 scattering matrix for the description of the
interaction process. This can be recast in the following form:

⎛
⎜⎝

|↑out〉left

|↑out〉right

|↓out〉left

|↓out〉right

⎞
⎟⎠ = S↑↓

QPC

⎛
⎜⎝

|↑in〉left

|↑in〉right

|↓in〉left

|↓in〉right

⎞
⎟⎠

=
⎛
⎜⎝

Be↑S↓→e↑S↓ A∗
e↑S↓→e↑S↓ Be↓S↑→e↑S↓ A∗

e↓S↑→e↑S↓
Ae↑S↓→e↑S↓ −B∗

e↑S↓→e↑S↓ Ae↓S↑→e↑S↓ −B∗
e↓S↑→e↑S↓

Be↑S↓→e↓S↑ A∗
e↑S↓→e↓S↑ Be↓S↑→e↓S↑ A∗

e↓S↑→e↓S↑
Ae↑S↓→e↓S↑ −B∗

e↑S↓→e↓S↑ Ae↓S↑→e↓S↑ −B∗
e↓S↑→e↓S↑

⎞
⎟⎠
⎛
⎜⎝

|↑in〉left

|↑in〉right

|↓in〉left

|↓in〉right

⎞
⎟⎠ .

(6)

To derive the expression for the ballistic conductance, let us consider a system of two
electrons, with one localized in the QPC and one freely propagating in the ingoing lead. Before
they interact, their density matrix reads

ρin =
∏

k

ρk,in ⊗ ρs =
∏

k

(nk↑|↑e〉〈↑e| + nk↓|↓e〉〈↓e|)⊗ (PS↑|↑S〉〈↑S| + PS↓|↓S〉〈↓S|)

=
∏

k

(nk↑ PS↑|↑e↑S〉〈↑e↑S| + nk↓ PS↓|↓e↓S〉〈↓e ↓S|
+ nk↑ PS↓|↑e↓S〉〈↑e↓S| + nk↓ PS↑|↓e↑S〉〈↓e↑S|) (7)

where nk↑,↓ is the mean number of electrons with definite spin projection and wavenumber, k,
which is given by the Fermi distribution function,

nk↑(μ) = 1

e(h̄
2k2/2m−gμB B−μ)/kT + 1

, nk↓(μ) = 1

e(h̄
2k2/2m+gμB B−μ)/kT + 1

, (8)

whereμ is the chemical potential in the quantum wire. In the right lead the chemical potential is
shifted down by the value eVds, and thus for the right lead μ should be substituted by μ− eVds.
PS↑ and PS↓ are probabilities of the localized electron findings in spin-up and spin-down states,
given by the formulae

PS↑ = egμB B/kT

egμB B/kT + e−gμB B/kT
, PS↓ = e−gμB B/kT

egμB B/kT + e−gμB B/kT
. (9)

5
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Using (7), the expression for the ballistic conductance of a QPC with localized magnetic
moment reads

G = eh̄

2πmVds

{
PS↑

∫ ∞

0
|Ae↑S↑→e↑S↑(k)|2[nk↑(μ)− nk↑(μ− eVds)]k dk

+ PS↓
∫ ∞

0
|Ae↓S↓→e↓S↓(k)|2[nk↓(μ)− nk↓(μ− eVds)]k dk

+ PS↓
∫ ∞

0
{|Ae↑S↓→e↑S↓(k)|2[nk↑(μ)− nk↑(μ− eVds)]

+ |Ae↑S↓→e↓S↑(k)|2[nk↑(μ)(1 − nk↓(μ− eVds))− nk↑(μ− eVds)

× (1 − nk↓(μ))]}k dk + PS↑
∫ ∞

0
{|Ae↓S↑→e↓S↑(k)|2[nk↓(μ)− nk↓(μ− eVds)]

+ |Ae↓S↑→e↑S↓(k)|2[nk↓(μ)(1 − nk↑(μ− eVds))− nk↓(μ− eVds)

× (1 − nk↑(μ))]}k dk

}
≈ e2h̄

2πm

∫ ∞

0

{
[PS↑|Ae↑S↑→e↑S↑(k)|2

+ PS↓(|Ae↑S↓→e↑S↓(k)|2 + |Ae↑S↓→e↓S↑(k)|2)]
(
∂nk↑
∂μ

)

+ [PS↓|Ae↓S↓→e↓S↓(k)|2 + PS↑(|Ae↓S↑→e↓S↑(k)|2

+ |Ae↓S↑→e↑S↓(k)|2)]
(
∂nk↓
∂μ

)

+ [PS↓|Ae↑S↓→e↓S↑(k)|2 − PS↑|Ae↓S↑→e↑S↓(k)|2]

×
[

nk↑(μ)
(
∂nk↓
∂μ

)
− nk↓(μ)

(
∂nk↑
∂μ

)]}
k dk. (10)

Figure 3 shows the dependence of the single QPC conductance on the chemical potential
μ for various values of temperature and external magnetic field. The parameters that have been
used in the calculations are m = 0.06 me, g = 2.0, Vdir = 0.07 e2/t (4π ε0 L), Vexch = 0.5Vdir.
The length of the QPC was taken to be equal to L = 50 nm.

The formation of the 0.7(2e2/h) feature in weak magnetic fields is predicted; it attains
a value of 0.5(2e2/h) in strong external magnetic fields because of the spin polarization of
electrons inside the leads [7]. When the chemical potential reaches the μ ≈ 5 meV value,
the potential barrier formed by the QPC becomes transparent for the singlet configuration,
so the conductance increases to the value 2e2/h (see figure 3). The oscillations seen at
the 2e2/h plateau are caused by the multiple scattering of the propagating electron at the
edges of the QPC. In its turn, the increase of the temperature causes the strong slope of the
conductance at small values of the chemical potential and reduction of the spin polarization
due to the additional population of the spin-down states in the QPC and leads (see the inset in
figure 3).

It should be noted that in our approach we have neglected the many-electron correlations
that are similar to the Kondo-type correlations between the localized spin and propagating
electrons. Their accounting for becomes crucial at extremely low temperatures, where the
‘0.7 feature’ disappears and normal conductance quantization is recovered [20]. Within our
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Figure 3. The conductance of a quantum wire with a QPC containing the localized electron as a
function of the chemical potential at different values of the external magnetic field. T = 0.5 K;
B = 0, 0.5 T, 1.0 T and 10 T. Inset: T = 10 K, B = 10 T.

model this effect can be explained using the scaling argument suggested by Anderson, who
showed that accounting for correlations gives rise to the renormalization of the constant
Vex with temperature in the model Hamiltonian given by formula (4) [31]. In the case of
antiferromagnetic interaction, the interaction constant Vex < 0 diverges for low temperatures,
leading to the formation of a Kondo cloud around the localized magnetic moment and the
appearance of a pronounced Kondo minimum in the temperature dependence of the resistivity
of the bulk samples. It was also argued that in quasi-1D systems accounting for the correlations
of a similar type results in the nontrivial temperature dependence of the ‘0.7 feature’, leading to
its disappearance for small temperatures [19, 20]. It should be noted, however, that recent data
show that the Kondo regime is not realized at least for some experimental configurations [32],
and the effect is caused by the spontaneous spin-splitting of the bands [33]. This corresponds to
the case of ferromagnetic interactions considered in the present paper, Vex > 0. Qualitatively,
the disappearance of the ‘0.7 feature’ for low temperatures can be also expected in this case.
Indeed, as was shown in [31] for ferromagnetic interactions, Vex goes to zero with decrease
of the temperature. Thus, for small temperatures the transport through a QPC becomes spin
independent, and the standard value of the conductance is recovered.

Using the scattering matrices (5), (6) and the expression for the ballistic conductance (10)
which takes into account all possible spin-conservative and spin-flip processes, one can proceed
with the calculations of the conductance of an AB ring containing a QPC with a single localized
electron.

4. The conductance of a double-slit ring that contains a QPC with localized spin

As in section 3, our consideration will be carried out within the formalism of the scattering
matrix for the four possible spin orientations of the ingoing propagating and localized electrons.
Therefore we should consider separately four mutual spin orientations with the corresponding
amplitudes of the waves propagating inside the AB ring that are shown in figure 4.

The conductance of the ring is governed by the phase factors for the clockwise ( f1, f3)

and anticlockwise ( f1, f3) propagating waves, which read

7
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Figure 4. The amplitudes of the waves propagating in an AB ring with a QPC inserted in one of its
arms.

Figure 5. The conductance of a three-terminal AB ring in an external magnetic field as a function of
the chemical potential. T = 0.5 K. 1—� = 0, 2—� = 0.25�0, 3—� = 0.5�0. Solid line—the
quantum wire with the localized moment at B = 0.

f1 = exp
[
i
π

2
(ka −�/�0)

]

f2 = exp
[
i
π

2
(ka +�/�0)

]
f3 = exp

[
iπ (ka −�/�0)

]
f4 = exp

[
iπ (ka +�/�0)

]
(11)

where � is the magnetic flux through the AB ring, �0 is the elementary flux quantum, k is the
wavenumber of the electron in the ring depending on its spin (if the Zeeman splitting of the
bands cannot be neglected), and a is the radius of the AB ring.

The dependences of the conductance on the chemical potential and the external magnetic
field can be found using scattering matrix techniques (see appendix C). They are shown in
figures 5 and 6. For simplicity, we assumed that the contacts between the AB ring and the leads
are completely transparent, σ = 0. The radius of the AB ring is taken as a = 500 nm.

Figure 5 demonstrates the dependence of the conductance on the chemical potential for
different values of the flux, �. Oscillatory behaviour is observed, which seems to be due to
interference of the triplet and singlet channels. For an AB ring of radius given above, the flux
� = �0 corresponds to an external field value equal to B ≈ 0.0026 T. Such a magnetic field
is not able to affect the transmission through a QPC with a localized electron (see figure 3).
But the magnetic flux appears to control the phase of the electrons moving within an AB ring

8
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Figure 6. The conductance of a three-terminal AB ring as a function of the external magnetic field.
The jump of the magnetic field was introduced to clarify the role of Zeeman splitting. μ = 2.0 meV;
T = 0.1 K, T = 1.0 K and T = 10 K.

efficiently, so that even tiny variations of the external magnetic field lead to great changes of
the conductance.

In a two-terminal AB ring when the flux value is � = n�0, where n is integer, the phase
difference for electrons travelling via the upper and lower arms is equal to 2πn. Thus, the
conductance in this case should be exactly equal to 2e2/h. In contrast, when the flux is equal to
a half-integer number of the flux quanta the conductance should be equal to zero. As a function
of the chemical potential, the conductance of an AB ring without a QPC should demonstrate
regular oscillations.

In an AB ring with a QPC containing a single electron the scattering becomes spin
dependent, and thus the simple oscillatory pattern described above is drastically modified. The
dependence of the conductance on the chemical potential is shown in figure 5. Two features
should be mentioned here. First, although the lower arm of the ring does not contain scatterers
and an ingoing electron can pass freely through it for any value of the chemical potential, the
‘0.7 feature’ in the conductance of the upper arm is clearly reflected in the conductance of the
whole system. Moreover, in zero magnetic fields, the 0.75 plateau of a single QPC seems to
be split into two, as is seen from the first curve in figure 1. If an external magnetic field is
applied, the plateau in the conductance is transformed into pronounced minima in the region of
the small concentration, which seems to result from the interference of the singlet and triplet
channels. The depth of the minima depends on the value of the magnetic field, being maximal if
the number of flux quanta is half-integer (curve 3 in figure 5). Naturally, for an integer number
of flux quanta the conductance is identical to the conductance for � = 0.

The dependence of the conductance on the value of the magnetic flux is shown in figure 6.
The Aharonov–Bohm phase shifts are revealed by the conductance oscillations. The asymmetry
of the oscillations seems to result from spin-dependent scattering at the QPC. This asymmetry is
slight for small values of the magnetic field (left part of figure 6) and becomes more pronounced
in strong magnetic fields, when the effects of Zeeman splitting should be important (right part
of the figure 6).

9
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5. Conclusions

The conductance of a quantum wire with a localized magnetic moment and of an AB ring
with a quantum point contact (QPC) that is inserted in one of its arms and which contains
a single electron has been analysed. The conductance of both devices has been calculated
as a function of the 1D carrier concentration and the external magnetic field. The exchange
interaction between an electron localized inside the QPC and a freely propagating electron
has been shown to modify the conductance pattern at small carrier concentrations significantly,
giving rise to the effects related to the formation of the ‘0.7 feature’ in the quantum conductance
staircase. The increase of the magnetic field leads to a transformation of the ‘0.75 plateau’ into
a ‘0.5 plateau’ due to Zeeman splitting.

The ‘0.7 feature’ of the ballistic conductance is reflected in the conductance of the AB ring
if a QPC containing a single electron is inserted in one of its arms. In zero external magnetic
fields, the 0.75 plateau in the AB ring seems to be split. The application of an external magnetic
field leads to the transformation of the plateau into a pronounced minimum in the region of
small concentrations.

The AB oscillations of a ring containing a QPC are slightly asymmetric because of
the effects of spin-dependent scattering. This asymmetry increases with the increase of the
magnetic field due to the effects of Zeeman splitting.
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Appendix A. Diagonalization of the exchange Hamiltonian

Let us consider the procedure of diagonalization of the Hamiltonian (4). The energy of the
coupled pair of electrons within the QPC can be determined using the basis of the uncoupled
states, |↑e↑S〉, |↓e↓S〉, |↑e↓S〉, |↓e↑S〉. The corresponding Hamiltonian reads

H = H0 + HZeeman + Hint

=

⎛
⎜⎜⎝

h̄2k2

2m − 2geμB B + Vdir − Vex 0

0 h̄2k2

2m + 2geμB B + Vdir − Vex

0 0
0 0

0 0
0 0

h̄2k2

2m + Vdir + Vex −2Vex

−2Vex
h̄2k2

2m + Vdir + Vex

⎞
⎟⎟⎠ (A.1)

where the g-factors of the localized and propagating electrons are assumed to be the same. This
Hamiltonian can be diagonalized by the canonical transformation
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H ′ = X+ H X =

⎛
⎜⎜⎝

h̄2k2

2m − 2geμB B + Vdir − Vex 0

0 h̄2k2

2m + 2geμB B + Vdir − Vex

0 0
0 0

0 0
0 0

h̄2k2

2m + Vdir − Vex 0

0 h̄2k2

2m + Vdir + 3Vex

⎞
⎟⎟⎠ (A.2)

where the unitary operator of the transformation reads

X =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1/

√
2 −1/

√
2

0 0 1/
√

2 1/
√

2

⎞
⎟⎠ . (A.3)

The new eigenstates look like

|1〉 = ∣∣↑e↑S

〉
|2〉 = ∣∣↓e↓S

〉
|3〉 = 1√

2

(∣∣↑e↓S

〉+ ∣∣↓e↑S

〉)

|4〉 = 1√
2

(∣∣↑e↓S

〉− ∣∣↓e↑S

〉)
.

(A.4)

The first three of them correspond to the triplet configuration, whereas the fourth is related
to the singlet configuration. In zero magnetic field the singlet and triplet state energies are
split by 4Vex. The position of the states depends on the sign of the coupling constant. If the
‘ferromagnetic’ coupling dominates, Vex > 0, the triplet configuration becomes preferable
energetically, while the opposite case is valid for the ‘antiferromagnetic’ coupling, Vex < 0.

Appendix B. Calculation of the amplitudes of spin-conservative and spin-flip processes

In this appendix we calculate the transmission and reflection amplitudes for the
Hamiltonian (4).

The spin of the falling electron and the localized spin can have four mutual orientations.
(1) |1〉in = eik↑ x |↑e↑s〉. This spin state is also the eigenstate of a free electron interacting with a
localized electron. In the configuration considered the electron spin is conserved after passing
the localized moment. Thus, the transmitted and reflected states look like

|1〉ref = Be↑S↑→e↑S↑e−ik↑ x
∣∣↑e↑s

〉 = rtr
(
k↑
)

e−ik↑ x
∣∣↑e↑s

〉
|1〉tr = Ae↑S↑→e↑S↑eik↑ x

∣∣↑e↑s

〉 = ttr
(
k↑
)

eik↑ x
∣∣↑e↑s

〉 (B.1)

where Ae↑S↑→e↑S↑, Be↑S↑→e↑S↑ are the amplitudes of the transmission and the reflection in
the given spin configuration, ttr(k↑), rtr(k↑) are the transmission and reflection coefficients
for the carrier having the wavenumber k↑ falling on the barrier whose height is determined
by the energy Utr = Vdir − Vex corresponding to the triplet configuration of the propagating
and localized electrons in the QPC. The values of rtr(k↑), ttr(k↑) can be estimated within the
quasiclassical approximation if the effective length of the QPC is known.
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(2) |2〉in = eik↓ x |↓e↓s〉. The situation is analogous to the previous one,

|2〉ref = Be↓S↓→e↓S↓e−ik↓ x
∣∣↓e↓s

〉 = rtr
(
k↓
)

e−ik↓ x
∣∣↓e↓s

〉
|2〉tr = Ae↓S↓→e↓S↓eik↓ x

∣∣↓e↓s

〉 = ttr
(
k↓
)

eik↓ x
∣∣↓e↓s

〉 . (B.2)

(3) |3〉in = eik↑ x |↑e↓s〉. This case is more difficult to be analysed compared to the previous
ones, because during the passing through the QPC region the propagating electron can undergo
a spin-flip, and thus the state |3〉 is coupled with a state |4〉in = eik↑ x |↓e↑s〉. To determine
the scattering amplitudes, one should divide the QPC region into the three zones: (1) the
ingoing lead, x < 0, (2) the region of the barrier formed by a localized spin, 0 < x < L,
and (3) outgoing lead, x > L. It should be noted that during the spin-flip process the energy
of the localized electron is reduced by the value 2gμB B , thus the energy of the propagating
electron increases by the same value. This means that a reflected (and transmitted) electron
which has undergone a spin-flip possesses the energy E = EF + 2gμB B , and although it
propagates in the spin-down mode, its wavevector remains the same.

The wavefunction of electrons in zones 1 and 3 can be represented as

ψ1 =
(

1
0

)
eik↑ x + Be↑S↓→e↑S↓

(
1
0

)
e−ik↑ x + Be↑S↓→e↓S↑

(
0
1

)
e−ik↑ x (B.3a)

ψ3 = Ae↑S↓→e↑S↓
(

1
0

)
eik↑ x + Ae↑S↓→e↓S↑

(
0
1

)
eik↑ x . (B.3b)

Finally, the wavefunction in the intermediate region should be determined. Using the
formula (A.2), one easily obtains

ψ2 = C

(
1
1

)
eik1 x + D

(
1
1

)
e−ik1 x + G

(
1

−1

)
eik2 x + F

(
1

−1

)
e−ik2 x (B.4)

where

k1 =
√

2m

h̄2 (EF + gμB B − Vdir + Vex) (B.5a)

k2 =
√

2m

h̄2 (EF + gμB B − Vdir − 3Vex). (B.5b)

The upper value corresponds to the triplet configuration of the propagating and localized elec-
tron, whereas the lower value is related to the singlet configuration. Thus, the complete wave-
function contains eight unknown constants: Ae↑S↓→e↑S↓, Ae↑S↓→e↓S↑, Be↑S↓→e↑S↓, Be↑S↓→e↓S↑,
C , D, F , G. They can be easily found from the system of the linear equations obtained by
matching the wavefunctions and their derivatives at the points x = 0 and x = L.

(4) |4〉in = eik↓ x |↓e↑s〉. The procedure is analogous to one described above. The
wavefunction now looks like

ψ1 =
(

0
1

)
eik↓ x + Be↓S↑→e↓S↑

(
0
1

)
e−ik↓ x + Be↓S↑→e↑S↓

(
1
0

)
e−ik↓ x (B.6a)

ψ3 = Ae↓S↑→e↓S↑
(

0
1

)
eik↓ x + Ae↓S↑→e↑S↓

(
0
1

)
eik↓ x (B.6b)

ψ2 = C

(
1
1

)
eik1 x + D

(
1
1

)
e−ik1 x + G

(
1

−1

)
eik2 x + F

(
1

−1

)
e−ik2 x . (B.6c)

Again, the coefficients are determined from the continuity conditions at x = 0 and x = L.
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Appendix C. Calculation of the scattering amplitudes of a ring with embedded QPC

If the spins of the localized and freely propagating electrons are parallel, the unknown
amplitudes of the waves propagating in the ring (shown in figure 4) are connected by the
following set of the linear equations:( b1

B
d2

)
= Sconj

( b2 f1

1
d1 f4

)
=
( r ε t
ε σ ε

t ε r

)( b2 f1

1
d1 f4

)
(C.1a)

( c2

A
d1

)
= Sconj

( c1 f2

0
d2 f3

)
=
( r ε t
ε σ ε

t ε r

)( c1 f2

0
d2 f3

)
(C.1b)

(
c1

b2

)
=
(

rtr,QPC t∗
tr,QPC

ttr,QPC −r∗
tr,QPC

)(
c2 f1

b1 f2

)
(C.1c)

where we introduced the scattering matrix of the conjunction of the leads and the AB ring, Sconj.
The conditions of unitarity give the equations connecting r, t, ε, σ coefficients (see [34, 35]).
These equations allow the determination of the transmission amplitudes through the system
Ae↑S↑→e↑S↑(k) and Ae↓S↓→e↓S↓(k).

The case of the anti-parallel orientation of spins of the localized and falling electron is
more difficult to be analysed. All amplitudes in figure 4 are now spinors, e.g. b1 = (b1↑, b1↓)+.
Consequently, the phase factors are diagonal 2 × 2 matrices. If the contacts between the AB
ring and the leads are spin-conservative, the equation for the amplitudes reads, in block form,⎛

⎜⎜⎜⎜⎜⎝

b1↑
Be↑S↓→e↑S↓

d2↑
b1↓

Be↑S↓→e↓S↑
d2↓

⎞
⎟⎟⎟⎟⎟⎠

=
(

Sconj 0
0 Sconj

)
⎛
⎜⎜⎜⎜⎜⎝

b2↑ f1↑
1

d1↑ f4↑
b2↓ f1↓

0
d1↓ f4↓

⎞
⎟⎟⎟⎟⎟⎠

(C.2a)

⎛
⎜⎜⎜⎜⎜⎝

c2↑
Ae↑S↓→e↑S↓

d1↑
c2↓

Ae↑S↓→e↓S↑
d1↓

⎞
⎟⎟⎟⎟⎟⎠

=
(

Sconj 0
0 Sconj

)
⎛
⎜⎜⎜⎜⎜⎝

c1↑ f2↑
1

d2↑ f3↑
c1↓ f2↓

0
d2↓ f3↓

⎞
⎟⎟⎟⎟⎟⎠

(C.2b)

⎛
⎜⎝

c1↑
b2↑
c1↓
b2↓

⎞
⎟⎠ = S↑↓

QPC

⎛
⎜⎝

c2↑ f1↑
b1↑ f2↑
c2↓ f1↓
b1↓ f2↓

⎞
⎟⎠ . (C.2c)

Here we assumed that the falling electron is in the spin-up state and the localized electron in
the spin-down state. If the opposite situation is realized, in (C.2a) the column in the right-hand
side should be changed as follows:⎛

⎜⎜⎜⎜⎜⎝

b2↑ f1↑
1

d1↑ f4↑
b2↓ f1↓

0
d1↓ f4↓

⎞
⎟⎟⎟⎟⎟⎠

⇒

⎛
⎜⎜⎜⎜⎜⎝

b2↑ f1↑
0

d1↑ f4↑
b2↓ f1↓

1
d1↓ f4↓

⎞
⎟⎟⎟⎟⎟⎠
. (C.3)

Solving the system of the equations (C.2) and (C.3), the transmission amplitudes for the
ingoing spin-up and spin-down electrons with and without spin-flip, Ae↑S↓→e↑S↓, Ae↑S↓→e↓S↑,
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Ae↓S↑→e↑S↓, Ae↓S↑→e↓S↑, can be obtained, which allow the calculation of the conductance by
means of equation (10).
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